

Certifications

MINISTERO DELL'AMBIENTE

TUHHTechnische
Universität
Hamburg

SPAIN

Università di Genova

Cedre

FRANCE

US

EU

T1 SOLUTIONS

Associations

ONBOARD OIL MANAGEMENT

The management of on-board oils and related spills represents an activity of primary importance in order to ensure high standards of safety and environmental protection

In routine activities, oil is usually recovered through the use of rags.

ROUTINE LEAKS
ONBOARD POLLUTION

Regulation 37 of MARPOL Annex I requires oil tankers of 150t gross tonnage and above and all ships of 400t gross tonnage and above to have an approved SOPEP plan for oil pollution.

Thus, there are **two different product configurations** for the same activity. Although the **SOPEP** is **more performant than the rags**, committing it for routine activities would represent an **excessive cost to the shipowner**.

FOAMFLEX: INNOVATION AND GREEN TRANSITION

A unique absorbent material that can replace rags and SOPEP plan

Higher performance

Operational benefits

Cost reduction

Environmental sustainability

Traditional polypropylene **SOPEP** is **better** performing than rags:

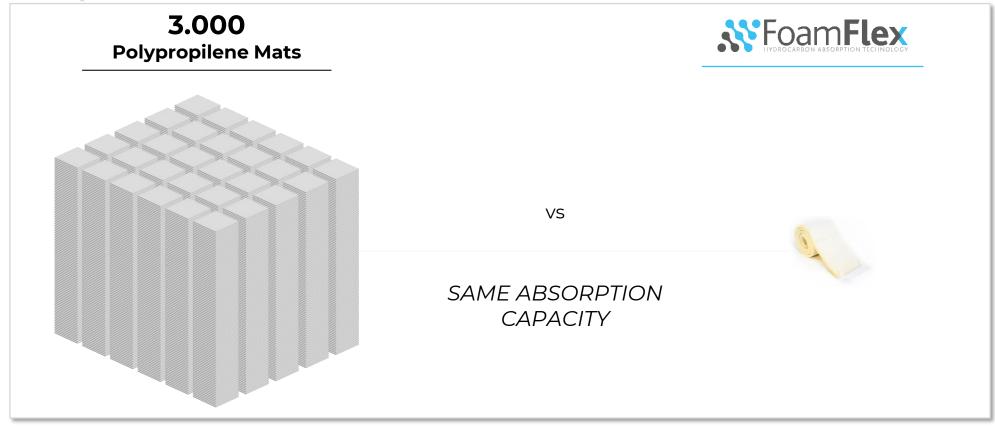
- Is composed of polypropylene that can selectively absorb oils versus water
- It has a significantly higher absorptive capacity (g/g)

In the performance analysis of FoamFlex, therefore, polypropylene is taken as a benchmark

• Oil absorbing capacity increased by 200% compared to

FOAMFLEX vs SOPEP

conventional SOPEP


- Superior tensile strength enabling long service life: 770 Newtons/m vs. 30
- Functional on any type of oil (synthetic, mineral, vegetable, fuels, lubricants,..)
- More effectively retains the oil inside, reducing dripping

Cost reduction

FOAMFLEX vs POLIPROPILENE

Environmental sustainability

x 200
Performance

1/300 Volume

Cost reduction

Environmental sustainability

OPERATIONAL BENEFITS

SIMPLE

Easy to use and reuse with long service life

EFFECTIVE

Effective and fast in case of machinery leaks that cannot be stopped immediately

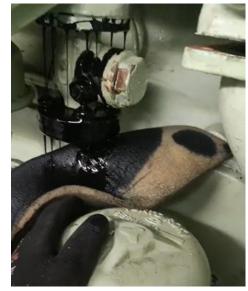
EFFICIENT

Reduces the time required for oil recovery operations, significantly decreasing man hours

ADAPTABLE

Adapts to any operational need and can be **customized at** the moment according to dimensional requirements

Cost reduction


Environmental sustainability


FIELD OPERATIONS (1/2)

Link Video 01

<u>Link Video 02</u>

Link Video

<u>Link Video</u>

<u>Link Video</u>

Stern ice: oily surface with water. FoamFlex cloth deployment and associated wringing.

Squeezing oil from FoamFlex carpet

Oil recovery from leakage

Oil recovery in tight space

Cost reduction

Environmental sustainability

FIELD OPERATIONS (2/2)

FoamFlex **freshly cut to size** to safeguard the operation of replacing gaskets diathermic oil heating system

FoamFlex pad reused numerous times. Upon receipt of the video it did not reach end-of-life and equated 50 rags that would have been disposed of.

Link Video

FoamFlex mats operational at sea in Tier3 incident.

Link Video

9

Cost reduction

FDAMFLEX vs RAGS

Environmental sustainability

FLEET SIMULATION (Total values on N ships with average LOA 1:	28 m and average DW	T 15,000 T)
CURRI V ACQUISITION COSTS	RUGS	FOAMFLEX
SUPPLY ACQUISITION COSTS Cost per kg absorbent material	RUGS 2€	250 €
	500	
Annual purchase of oil absorbents (Kg) per ship Number of ships in fleet	500 8	
Annual absorbent purchase for oil handling (Kg)	5.000 80	
Total absorbent capacity full supply (L)	30.000	112.000
Annual absorbent purchase cost for entire fleet	10.000 €	20.000 €
Cost of ancillary machinery per individual ship	-	2.000 €
Years machinery depreciation	-	5
Annual machinery cost breakdown		400€
Total machinery cost over entire fleet	-	4.000 €
Total annual purchase cost	10.000€	24.000 €
DISPOSAL COSTS	RUGS	FOAMFLEX
Average oily solid waste disposal cost (per kg)	2€	
Kg tot used absorbent material to be disposed of as oily solid waste	35.000	88
Total absorbent disposal cost	70.000€	176 €
Average liquid waste disposal cost (per cubic metre) - BILGE	119 €	
Average liquid waste disposal cost (per Liter)- BILGE	0,12 €	
Liters of tot oils to be disposed of	-	112.000
Percentage oil recovered post wringing and reusable	-	0%
Liters of reusable recovered oil	-	0
Total oil disposal cost	-	13.328 €
Total annual disposal cost (oils + solids)	70.000€	13.504 €
Price per Liter of virgin oil (lubricant)	5€	

Taking into account all expenses,		
from purchase to disposal of		
FoamFlex kits, and calculating only		
35% of the 200 possible reuses, this		
results in an average cost reduction		
per ship of 50-70% compared to		
traditional mops		

Variable data

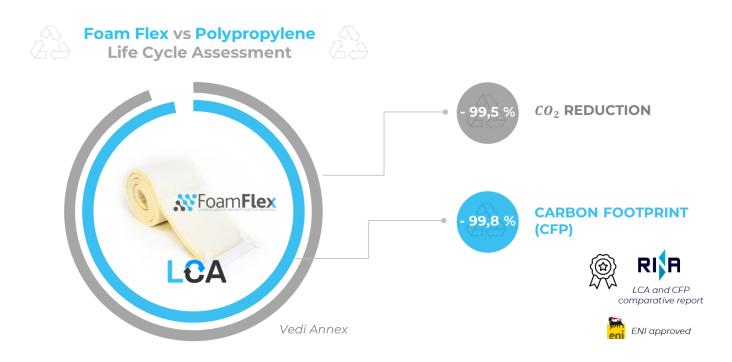
TOTAL ANNUAL COST PER N SHIPS FOR PURCHASE AND DISPOSAL

COST REDUCTION (%)

SAVINGS GENERATED

37.504 €

42.496 €


Cost simulation excel sheet available upon request, customizable to shipowner company's current costs

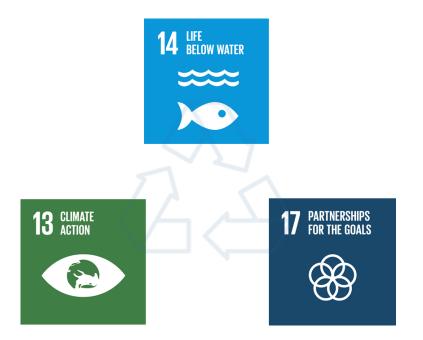
Higher performance Operational benefits Cost reduction

ENVIRONMENTAL SUSTAINABILITY

Environmental sustainability

In addition to ensuring **higher safety standards and effective management of potential spills**, FoamFlex is a basic requirement for **environmental and marine ecosystem protection**.

More and more shipowners, ports and infrastructure are adopting FoamFlex to raise sustainability standards.


See the attachments to explore our successful initiatives.

Cost reduction

Environmental sustainability

FOAMFLEX E CORPORATE REPUTATION

Protection of the marine ecosystem

Due to its high performance and ease of use, FoamFlex has been successfully used in numerous hydrocarbon spills

Circular Economy

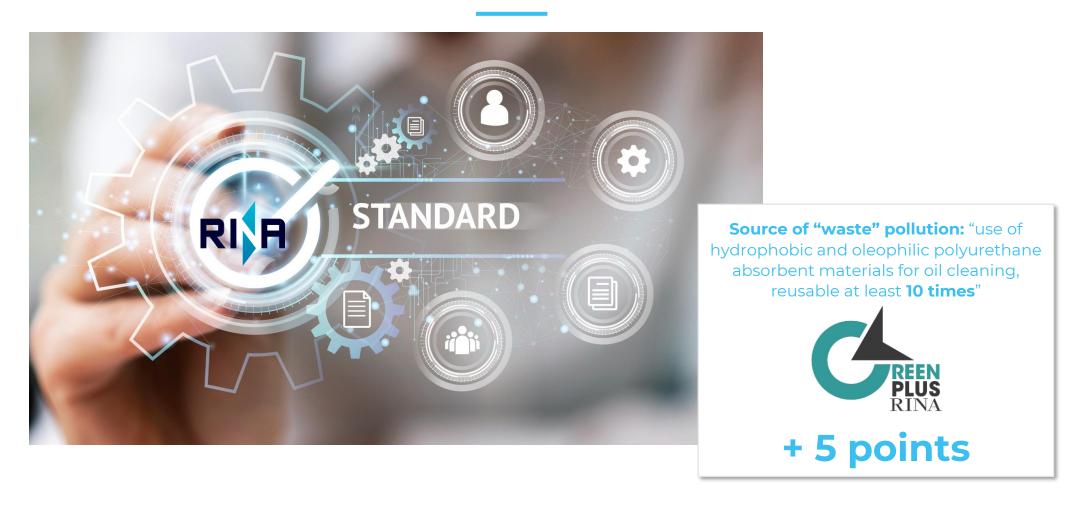
Due to the reuse of absorbent material and the possibility of recovering intact oil, there is total reuse of resources, minimizing waste

Net zero

The LCA-GHG study carried out by Rina showed that the use of FoamFlex compared to traditional methods reduces emissions by 99 percent

Higher performance

Operational benefits



RINA GREEN PLUS

Major Italian ports are beginning to include this type of reusable material as a requirement.

FoamFlex is thus beginning to become a mandatory standard for major ports operated by the Italian government

NON-SELECTIVE RAGS, RECOVER WATER AND OIL INDISCRIMINATELY SORBENTS WITH REDUCED ABSORBENT CAPACITY (13L x KG)

EFFICIENCY

SELECTIVE ON OIL
HIGH ABSORBENT CAPACITY (25/30L x KG x 200 times)

SINGLE-USE FREQUENT REPLACEMENT

DURATION

REUSABLE UP TO 200 TIMES (BY SIMPLE WRINGING)
LONG SERVICE LIFE, LOW TURNOVER

HIGH VOLUME IN STOCK HIGH VOLUME SOLID WASTE MANAGEMENT

FOOTPRINT& VERSATILITY

UNIQUE CUSTOMIZABLE PRODUCT FOR EACH OPERATION, 1/3 VOLUME SIGNIFICANT SOLID WASTE VOLUME REDUCTION

HIGH AMOUNTS OF SOLID WASTE TO BE **DISPOSED OF BY WEIGHT** (2-3€/KG)

COSTS

SOLID WASTE REDUCTION. **RECOVERS REUSABLE INTACT OIL**. **TOTAL COST REDUCTION OVER 50%.**

EMPLOYMENT OF MAN HOURS TO SELECT SUITABLE RAGS. LOW EFFECTIVENESS; SLOW; FREQUENT REPLACEMENT

REQUIRED TIME

PRACTICAL, FAST, LOW REPLACEMENT

INEFFECTIVE MANAGEMENT OF OILS, INCREASED RISK OF POLLUTION, SINGLE-USE PLASTICS, **EXTENSIVE CREATION OF SOLID WASTE**

SUSTAINABILITY & CORPORATE REPUTATION

CIRCULAR ECONOMY, CARBON FOOTPRINT ABATEMENT (-99.8% CO2), WHOLE OIL RECOVERY

LIFEGATE

WATER DEFENDERS ALLIANCE

Every action matters, every gesture is a drop.

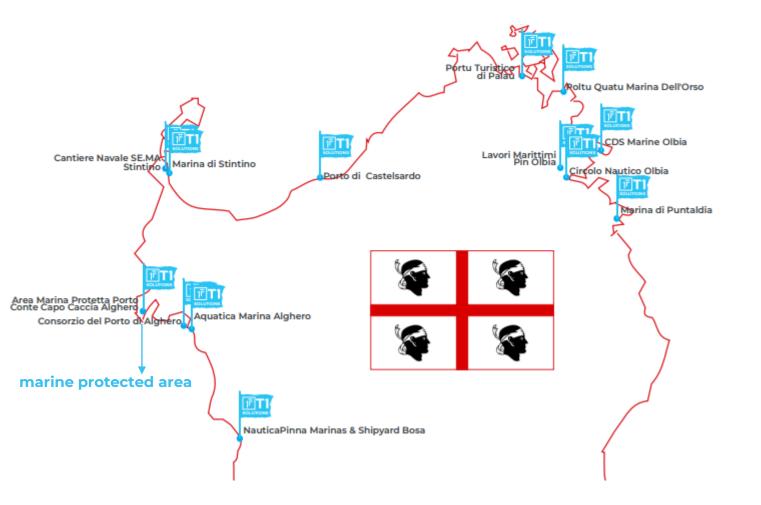
And the sea is the sum of our drops.

The Water Defenders Alliance promoted by LIFEGATE respond to the problems of our waters, identifying the main challenges and proposing concrete, impactful and measurable solutions that can be put on the ground, or rather in the water.

Everyone has a crucial role to play

Innovative companies can be part of the solution

 Π provides the technological innovation


Ports can host them

People can actively partecipate in monitoring activities and stimulate institutions to establish more effective regulations for the protection of our seas.

The purposed solutions can range from **capturing** floating waste and **hydrocarbons in the water**, engaging in habitat restorations activities that aim to restore the increasingly fragile marine biodiversity in **99 ports** and **4 protected marine areas**.

WE ARE PROTECTING SARDINIA

Through our network of suppliers we have reached ports in northern Sardinia in Italy. Commercial activity has focused on:

- Changing the current remediation paradigm
- Spill prevention activities & furniture, training
- Raising awareness of both environmental and economic sustainability issues
- Ability to intervene extensively throughout the northern region

Dil spill in Canton Ticino, Switzerland

User: Fire Brigade **Location**: Switzerland

Year: 2021

Need: Containing the spillage of a diesel tank into

the Ticino River

Adopted Solution: Carpets and Wringer

Result: Cleaning the river and collecting the diesel

fuel.

Dil spill in Garda Lake, Italy

User: NBCR Brescia **Location**: Lake Garda

Year: 2018

Need: Contain spillage from a tank into an irrigation ditch that has direct path to the lake

Adopted Solution: Mats and Wringer

Result: Cleaning the irrigation ditch and collecting

hydrocarbon

Dil spill in Palau, Italy

User: Port Authority **Location**: Palau

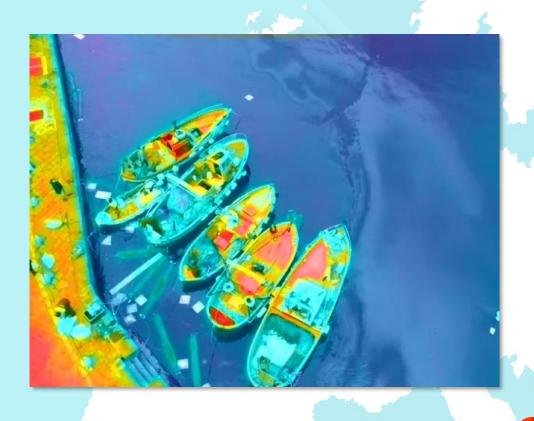
Year: 2021

Need: Contain spillage due to the sinking of a

tourist boat

Adopted Solution: Containment barriers, mats

and Wringer


Result: Cleaning the sea and collecting spilled

diesel

Dil spill in Portici, Italy

User: Harbour Master Location: Portici

Year: 2022

Need: Contain spillage in port area **Adopted Solution**: Containment barriers, mats

and Wringer

Result: Cleaning the sea and collecting spilled

hydrocarbons

UNIVERSITY CONCLUSION

"FoamFlex is highly effective in removing diesel and crude oil from water. Comparison with polypropylene shows superior performance of the FF both as regards the absorption capacity and the possibility of reusing the material after squeezing. Economic considerations also show advantage in economic terms, related not only to the greater absorbency, but especially to the possibility of reusing the adsorbent material (up to 200 times), unlike the PP, and recovering the spilled product unaltered. This leads to the dual benefit of a considerable reduction in the quantity of product to be disposed of and the possibility of economically valorising the recovered oil.

FoamFlex is a cost-effective and environmentally-friendly solution for oil spill. The study provides valuable insights into the performance of FoamFlex and its potential as a solution for oil spill cleanup."

Journal of environmental and chemical engineering

ScienceDirect

TUHH Technische Universität Hamburg

"Finally, **deployment** examples in **real conditions** are shown, where it proves to be a **flexible**, highly **reusable**, and **cost-effective** alternative to materials already in use. It was also shown that, after 50 cycles of sorption and desorption, there is no significant decrease in the recovery rate and no material deformation."

Journal of Marine Science and Engineering

